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Abstract

Much of modern stochastic control theory uses ideal white noise driven

models (Ito equations). If the observed data is corrupted by noise, then the

noise is usually assumed to be 'white Gaussian'. Typically, if the underlying

models are linear, one uses a Kalman-Bucy filter to get an estimate of the

state, and then bases the control on this estimate. In practice, the noises are

rarely 'white', and the reference signals and the systems are only

approximations in some sense to a diffusion. Never-the-less, owing to lack of
i.. .*

viable alternatives, one still uses the Kalman-Bucy filter, etc. Then the

estimates are not optimal and, indeed, might be quite far from being optimal.

Similarly for the corresponding control. (Examples are given to illustrate this.)

The sense in which the estimates and/or control is useful need to be examined

in order to justify the use of the commonly used procedure. The issue is

much deeper than mere 'robustness' in the usual sense, since basic questions of

interpretation of the results are involved. The paper deals with these

questions. For the filtering problem where the signal is a 'near'

Gauss-Markov process and the observation noise wide band, it is shown that

the usual method is 'nearly optimal' with respect to a class of alternative data

processors. This alternative class is rather natural and includes the data

processors which one would normally want to use. It is unlikely that the class

can be enlarged very much in general. The asymptotic (in time and bandwidth)

problem is treated, as is the (much harder) conditional Gaussian case, and a

case where the observations are non-linear. The basic techniques are those of

weak convergence theory. Similar results are obtained for the combined

.. ~ -
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filtering and control problem, where it is shown that good controls for the

'ideal' model are also good for the actual physical model, with respect to a

natural class of alternative controls. The control problem over a finite -

interval as well as the average cost per unit time problem are considered.

o-.m
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Introduction

I~

In much of modern control and filtering theory, one uses ideal white

noise driven modcls of the following type, where Wy(.), Wz( )  and Wx()

are standard Wiener processes, u(.) is a control, and b,, oz, etc., are

appropriate functions. We let z(.) denote a reference signal, x(.) the

control system, y(.) the (integral of the) noise corrupted observation and

rT(u) and 7(u) the cost function.

(1.1) dz bz(z)dt + oz(z)dW,

(1.2) dx = bx,u)dt + ox(x)dW.

(1.3) dy ; h(x,z)dt + dW -

,T
(1.4) rT(u) -- f E k(x(s), z(s), u(s))ds

0

(1.5) r(u) lim rT(u)/T

Of course, the actual physical system, which we denote by z(.), xE(.),

yE(.) (reference signal, control system, integral of the physical observation

noise) is not of the form (1.1) - (1.3). The reference signal z (.) might be a

'near diffusion' - only approximately representable by (1.1), and the noise in

the control and observation system would rarely be 'white'. But, typically, one

somehow decides upon a suitable model (1.1) (1.3), attempts to determine a

good or 'nearly optimal' control for that model, and then applies this control

to the actual physical system. In such a context, one must naturally question

',w



-- - - - - - - -. . 77. ..

I I

S.,

-2-

the value of the determined control for the 'physical' problem, as well as the

value of the output of the filter (even for any 'nice' fixed control) for

making estimates of functionals of the physical process z'(.) which is

approximated by z().

The filter output will rarely be even nearly optimal for use in making

such estimates, and the control (based on the filter outputs) will rarely be

'nearly optimal'. Very little attention has been devoted to such problems - yet I

they are at the core of the problem of relevence of much theoretical work. An

important theory of robustness has been developed [9], [10] - in which one

tries to construct a filter in which the output is a continuous function of the

input. The idea is that the model would be (1.1), (1.3), but with WY( *)

replaced by something else. Such robustness is very useful. But the very

raising of such a robustness issue implies that the noises might not be white.

If that is the case, what is the value of the filter (robust or not) - or of

controls based on the filter output. Unless one is willing to assume more,

there is no statistical interpertation of the output of such a filter.

Furthermore, robustness must deal with the full control/filtering problem,

correlation between the systems, the asymptotic (average cost per unit time

problem), z(.), x(-) replaced by 'near diffusions', etc. We will deal with all

these questions here, when the approximating system (1.1), (1.2) is linear -for

which a fairly complete theory can be obtained.

Owing to the usual lack of 'near optimality' (for the physical system) of p

the filter and control which is obtained by using (1.1) - (1.3), one can only

ask the question: with respect to which alternative filters ('data processors') or

controls for the physical system are the chosen ones nearly optimal? It turns

- .. . . . . . . .. . . . . . . . . . . .,

. - ... ".
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out, under quite broad condition, that this class of alternative filters and

controls is quite large and very reasonable. Such results are essential, if the

use of the ideal models (1.1) - (1.3) is to make sense in a large part of the

applications.

The basic mathematical techniques used here are those of the theory of

weak convcrgcnce of probability measures [1], [3], [4], a group of methods

which are quite powerful for dealing with many difficult approximation

problems in control and communication theory (and elsewhere) [1], 15] - [8],

[141, and [15]. The basic questions of approximation here are closely related

to those of the convergence of the sequence of physical processes

(zE(.), x6(.), yE(.)) to the ideal model (1.1) - (1.3), as the 'bandwidth' of the

driving noises (say, I/E 2 ) goes to infinity.

We begin with a discussion of the pure filtering problem. Here - for the

case where the ideal model is linear - one would simply use the Kalman-Bucy

filter for the ideal model but whose input is the physical observation.

Obviously, the filter does not usually yield the conditional distribution of the

z6(t) given the data yE(s), s < t. In Section 2, we discuss some counter

examples to illustrate the sort of difficulties which arise in such

approximations, and in Section 3 the approximation theorem is given, together

with the class of alternative data processors. Section 4 concerns the average

filter error per unit time - or the errors for large time. We show that the

filter output can be used to obtain estimates of a wide class of functionals of

zf(.), which are good with respect to a very broad and natural class of

alternative estimators. The examples in Section 2 illustrate why they would

not be 'nearly optimal' in general. In Sections 5 and 6, we treat the
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conditional Gaussian case, and a case where the observation is non-linear, and

in Section 7, the non-linear observation case for large time. The power of the

weak convergence approach should be amply evident in these sections. The

conditional Gaussian case must be treated with some care, owing to the

interaction between the wide bandwidth noise and the 'conditional Gaussian'

coefficients. It is particularly important that any robustness or approximation

theory be able to treat the large time - large bandwidth problem, and the

conditional Guassian case and, at the moment, there seems to be no alternative

to the weak convergence point of view for this.

The combined filtering and control problem is dealt with in Section 9.

The optimal control for (1.1) (1.3) will be nearly optimal for the physical

system - in comparison with a large class of alternative controls. Appendix I

contains some definitions concerning weak convergence. We will use the arrow

0 to denote weak convergence. We have tried to formulate the models and

results so that the paper is not burdened with a large amount of weak

convergence theory or calculations - and so that available references can be

used where possible. There are extensions in many directions: discrete

parameter problems, impulsive control, etc., all treated very similarly to the

treatment here.

F-
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2. 'Nearly' Optimal Linear Filtering: Formulation and Preliminaries

In the next few sections, wc consider the following filtering problem:

For each E > 0, z(-) is a signal process, tj(.) is a 'wide-bandwidth'
y

observation noise, the two are mutually independent and right continuous (with

left hand limits) and the actual observation process is { E(t), t 0):

(2.1) .'E(t) = Hz (t) + y() yE( 0 ) 0

The 'dependent' case can readily be handled. It's omitted in order to simplify

the notation. Define vE(t)= J ' y,(s)ds and W,(t)= Jt ,(s)ds. Let z(-)

be a Gauss- Markov process satisfying

(2.2) dz = A zdt + Bz dW, ,.'

where )z( is a standard Wiener process. The A, B ,. H are constant

matrices, although they could be time-dependent in all parts, except those

where t

We arc concerned with the case where (-) is 'nearly' white noise,

and zE(-) is 'nearly' a Gauss-Markov diffusion, and hence suppose that

(2.3) (z (-, W()) (z(.). W (.)) as E 0
yy

where NV(-V is a non-degenerate Wiener process. By the weak convergence
y•

and independence of zE(.) and W(.), W\(-) is independent of NV(.). The
y

weak limit of {yE(-)} is y(

. . . . .

S. . .'. -
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-6-

(2.4) dy = Hzdt + dWY , y(O) =0.

Let y 6 Rk, Euclidean k-space, and z E R m.

The actual physical system is 'fixed' and correspond to some small

E > 0. The use of weak convergence here is just a way of embedding the

actual data in a sequence - so that an approximation method can be used. We

work with the 'near diffusion' zc(.) and 'wide bandwidth' noise tc(.). But

to evaluate the filter that we design by using the ideal model (2.2), (2.4), but

with actual input ,E(.), the weak convergence method is very useful. W.p.l

convergence ideas are inappropriate in our context and would (in any case)

restrict our flexibility. The 'distributional' information contained in the weak

convergence is all that is needed, since the filters are evaluated by computing

expectations of prediction errors. Similarly, the value of a control is evaluated

via an expectation of a cost function - so only distributional information is

needed.

We are interested in approximating the value of expectations of

functions of zE(.), conditioned on the data yE(.). This is not easy. Except

(and even then, rarely) for the special stationary and Gaussian cases of the

classical Wiener theory, it is nearly impossible. Furthermore, if robustness is

the issue, then we cannot restrict ourselves to Gaussian noise - since it itself

is only an approximation to the physical processes.

For (2.2), (2.4), the classical Kalman-Bucy filter equations are

0~°

' ° " ° I
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A A A

(2.5) dz = A zdt + Q(t) [dy - Hzdt]

Q(t) = E(t)H R '

(2.6) = gZE + EAZ + BzB. EH Rp  H

where Ro = covariance matrix of observation 'noise' WY(l), which (w.l.o.g.,

by a simple rescaling) we set to I, unless mentioned otherwise. In practice,
L-l

with physical wideband observation noise and the signal only a 'near'

Gauss-Markov process, one normally uses (2.6) and the 'natural' adjustment of

(2.5), namely

A•IE A

(2.5W) z= A z zE + Q(t) [y - Hz(] .

We want to know in what way the pair (2 .5 wB), (2.6) makes sense.

Typically, it is not an optimal - or even nearly optimal - filter, for the

physical observation. But, as will be seen, it makes a great deal of sense and

is quite appropriate in a specific but important way. One cannot ask whether

it is 'nearly optimal' - but, rather, with respect to what class of alternative

estimators is it 'nearly optimal' when estimating specific functionals of zE(-).

Weak convergence theory provides a natural tool for answering this question.

Some of our results are related to these in [21, which concerns a non-linear

filtering problem. But, for our specific case, it is possible to go further and

get much more information fairly readily, and to treat the asymptotic (in time

as well as in bandwidth) problem, various non-linear observation functions, the

conditional Gaussian case, and the combined filtering and control problem;

hence the overlap with [2] is very small.

..... -,-.-............................... ....,. .. .4 . . . , -, - ..4
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Before proceeding, it is useful to consider several simple examples which

illustrate the problems that we must contend with, particularly concerning the

difference in the 'information' contained in the (integral of the) physical

observation process yE(.) and in the ideal (limit) y(.), and the possible lack

of continuity in the optimal estimators as the noise bandwidth goes to ** Let

(Xn,Y n ) be bounded real-valued random variables which converge in

distribution (or even w.p.l) to (X,Y). Generally E(XnIYn) -/- E(X[Y). Xn

might be a physical signal and Yn the physical observation, with the pair

(Xn,Y n ) close in distribution to a much simpler pair (X,Y).

Consider the example where the lack of convergence is particularly evident:

Example 1. Xn = X, Yn =X/n.

Example 2 illustrates a related pathology. If Zn  Zn(Y), where Y

is a random varible and (ZnY) * (Z,Y) (or even converges w.p.l). Then Z

is not generally a function of Y.

Example 2. Let Y be uniformly distributed on [0,1]. Define Zn = nY

for 0 , Y < l/n and, in general, define Z n = (nY k) on

k/n ( Y < (k+l)/n, k = 0,1,...,n-l. Zn  is a 'sawtooth' function of Y. Also

(Zn,Y) (Z,Y) where Z is independent of Y, and both Z and Y are

uniformly distributed on [0,1]. Clearly E(ZnjY) -'- E(ZjY) in any sense.

Example 2 arises when we have a sequence of estimators, say

Z(y()), using the data yc( .). Even if the pair (Z (yE( )) y(

?$.. .. . . . . . . . . . . .
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converges to a pair (Z,y(.)), the limit Z might not be a function of y(.).

Here the limit is, in fact, independent of the data y(.). Similarly, for a
-1. *1~

control problem using noise corrupted data, say ye(.). The limit control

might be independent of the limit data! _,.

Even though WE(-) 4 Wy(), a non-degenerate Wiener process, y

might contain a great deal more information about zE(.) than y(.) does

about z(-). For an extreme case, consider

Example 3. Let t, i > 0, be a strictly increasing sequence of real numbers

for each C, such that ti and ,up C '0Df-I t *i i + 1 - t 1 - 0 . D f i n e, ' , -'

S2 i+ -t 2i, and for any t > 0, let i , -.0. Define a 'new'

observation noise y( -) by resetting (t) 0 for t ti, t , all i.

The integral of the new te(.) still converges weakly to the Wiener process 1-"

W y( But H~ze(.) is known nearly exactly for small E. There are even

forms of this example for which the new E() is stationary.

These examples arc admittedly pathological. But we are working with

vague concepts such as 'wide bandwidth' observation noise, 'near' Gauss-Markov

processes, and with integrals of the observation (as one always does in modern -"

filtering theory). The examples do caution us to take considerable care. The

examples showed that we might lose information in going to the limit. The

following lemma (whose truth was first told to the author by T. Kurtz) shows

the sense in which we never gain information on going to the limit (i.e.

noise bandwidth _ ,)

-.4°

. . . " . .
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Def inition. For a set G, 8G =(closure of G) minus (interior of G)=

boundary of G. For a random variable Y, let B(Y') be the minimal

cr-algebra measuring Y, and let IG(Y) denote the indicator function of the

set {w:Y e G).

Lemma 2.1. Let (XYd) => (XY) (Xn-real valued, Y. vvilh values in R 6).

Then

(2.7) Jim E[Xn E(Xn Yn)]2  E[X -E(X Yj]
n

Remark. In Examples I to 3, the inequality is strict.

The proof is in Appendix 2. There is a similar result when Yn is

replaced by a (cadlag: right continuous with left hand limits) random process.

kiI

LI



3. A Class of Data Processors (Estimators)

For the ideal filtering problem with data (2.2), (2.4), the optimal decision

functions are functions of the estimates z(-), E(.) since these completely

determine the conditional distribution. There are no alternative (admissible)

functions of the data y(,) which are better. This is not so with estimates

based on E(-), zE(-) for the system zC(.), yE(.). We now define a large

class of functions of the observed data yE(.) with respect to which functions

of z Y(-), X(-) are 'nearly optimal' for small i > 0, and a large class of risk

or cost functions. In order to know how good estimates based on z'(-), (-)-

are for getting information on zE(-), we need to specify both a class of

(observation data dependent) alternative estimators - as well as a criterion of

comparison; i.e., a cost function. We work with only one particular cost

function - but the general idea and the natural extensions should be clear, and

the method works with 'typical' cost functions.

Let 1) denote the class of measurable functions on C[O,o], the space of

real valued continuous functions on [0,0) (with the topology of uniform

convergence on bounded intervals), which are continuous w.p.l relative to

Wiener measure (hence, with repect to the measure of y(.)). Let Bt denote

the subclass which depends only on the function values up to time t. For

arbitrary F(-) E or in Bt, we will use F(y6(-)) as an alternative

estimator of a functional of zc(.). The class is quite large, as will now be

seen.

First, note that ) contains all continuous functions and that the z(.)

of (2.5) can be written as a continuous function of the integral of the driving

517
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force y(.). [To see the latter point, solve (2.5) in the form of a Wiener

integral and do an integration by parts.] Thus, continuous functions of zI(.)

are admissible estimators. Many important functionals are only continuous

w.p.l (relative to Wiener or y(.) measure). For some integer n, let A be

a Borel set in Rnk with aA having zero Lebesque measure). Then [3], the
function IA(X(tl),...,X(tfl)) is in Bt for any t1,...t n , t, where x(-) denotes

the canonical function in C[O,*). Let T(x(.)) denote the first time that a

closed set A with a piecewise differential boundary is reached by x(-).

Then the function with values T r T(x(.)) is in 1)T for any T < *.

Thus, our alternative estimators can involve stopping times. This is essential

in sequential dccision problems or whenever the cost or risk function involves

first entrance times of a function of y(.) into a decision set.

) and :Dt  do not contain 'wild' functions such as those involving

differentiation. We consider 3) and Dt as a class of data processors. It

seems to contain a large enough class for practical applications when the

corrupting noise is 'white'. For the 'limit' (white observation noise, system

z(.)) problem, one would usually want processors that arc continuous

functions (w.p.l) of the data y(-). See the comments following the theorem

statement below.

The following is one the main 'robustness' or 'approximation' results. For

a function q(z), we write (PE,q) for the integral of q(z) with respect to

the Gaussian distribution with mean z(t) and covariance E(t) - the ersatz

conditional measure of zE(-). We let the q(.) and F(-) below be

bounded, but the theorem holds if ((Pc,q)2 , q2 (z (t)), F2(vE(.)} is uniformly

integrable.

.- % -.-- ' ' -( ' " " -'. -' " '-' ...- - .. -- . .. .i -. '- " -' - " .? i " • "- " 3 -) --i "- " .( - - -. -" " ' --3 .-. ', ) ' i- , -( '-
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Theorem 3.1. Assume the conditions on z6(.), W((.) of Section 2. Then
Y

(zE(-), zC(.), WE(.)) * (z(.), z(.), W (.)). Let F(.) E I) be bounded. and q(.)

bounded continuou.s and real valued. Then (the limits all exist)

(3.1) lim E[q(zE(t))- F(y6(-))]2

> lim E[q(zE(t)) - (Ptq)]2 .

Remark. The theorem states that (for a small c) the ersatz conditional

distribution is 'nearly optimal' with respect to a specific (but broad) class of

alternative estimators. The alternative class includes those that make sense to

use when the corrupting noise is white. If the noise is wide band, then it

might not make sense to exploit its detailed structure and use other 'better'

estimators. Doing so might, in practical cases, cause processing errors and

other (unmodelled) noise effects. We chose the estimate of the conditional

mean at t in (3.1) for illustrative purposes. Many other cost or risk

functionals could be considered; e.g., integrals of estimation errors - or the use

of the estimates for control purposes (see below). The comment on stopping

times in the paragraph above the theorem is useful for sequential estimation -

where one stops when some function of the data first hits a decision set.

The assertion concerning the weak convergence is obvious, but necessary,

since we need to know that the limit of the cited 6-triple represents a true

filtering problem - with all three components, the system z(.), the filter z(-)

and the obscrvation noise (integral) W(.). The result would not make sense

if only 2 out of the 3 components converged.
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Proof. By the weak convergence of the hypotheses and the w.p.I continuity

of F(-) we also have the weak convergence

(z6(t)), F(Y6(')), (P 'q)) *.~

(q~zt)) F~(.), (P,,q)),

B=

where (Pt,q) = fq(z)dN(z(t), E(t);dz), and N(z,E;.) is the normal distribution

with mean z and covariance E. Thus, the left and right sides of (3.1)

converge to, respectively,

E[q(z(t)) - F(y(.))],

(3.2) :-

2: :32)E (z(t)) Eq(z(t)),y(s), s t

Now, the proof follows from the fact that the second expression is no greater

than the first, since the conditional expectation is the optimal estimator.

Q.E.D.

B~l



-15-

4. The Large Time Problem (Large t. small E)

The filtering system often operates over a very long time interval. For
-. .-

the model (2.2), (2.4), one would then use the stationary filter and any

acceptable method of analysis should be able to handle this 'large time'

problem. But with the system y E(.), zE(), two limits are invohed since both

t - and E -" 0, and it is important that the results not depend on how

t " and f - 0, and that the use of the stationary limit filter is justified.

The weak convergene method is well set up to handle this problem.. For

convenience we make some additional assumptions.

C4.1. Az is stable. (A ,H,) is observable and (A±,B.) comrollahlc.

By (C4.1), (2.6), has a unique, positive definite stable limit . The

second part of (C4.2) is unrestrictive. It says simply that increments in W(

behave 'close' to a Wiener process for small e - no matter what t is.

C4.2. (t) takes the form 6(t) = y(t/E2)/E, where () is a right

continuous second order stationary process with integrable covariance function

R(.). Also, if te as E - 0 , then W (tE +.) - W (tE) => Wy

Remark. The model (C4.2) is a common way of modelling wide bandwidth

noise, and is used to simplify a calculation below, and to avoid the details

involved with other models. Note in particular that if S (w) is the spectral

density of y(.), then Sy(E w) is the spectral density of E4(). The

• • ..

. o . •
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S(2
S w) convcrges to the spectral density of white noise as E - 0, if S Y()

is continuous at w = 0. It will be clear from the proof below that the

condition can be considerably weakened. We also make the rather unrestrictive

assumption that the initial time is not important and that the zE(.) processes

do not explode:

C4.3. If (zE(t,)) converges weakly to a random variable z(0) as E 0,

then zE(t + ) z(-) with initial condition z(O). Also

sup EIz 6 (t)1 2 <
E,t

Consistency. In order that z(.), E(.), be a filter for z(.), y(.), it is

necessary that the initial conditions be consistent. Let N(z,E;A) denote the .

probability that the normal random variable (with mean z, and covariance E) " -

takes values in the set A. By consistencv, we mean that P(z(0) E A z(0),

E(O)}= N(z(O), E(O);A). One cannot choose the initial (random) conditions

arbitrarily. It should be obvious that if E(O)= E and (z(0), z(0)) are the .-

stationary random variables for (stable) (2.2) and (2.5), then the initial

conditions are consistent.

The question of consistency arises in our work since as E - 0 and

t -*, we do not know a-priori what the limits of (zE(t), zE(t)) are. When we

study the asymptotics as t and E -0 , wc will start the filter at some

large tE and the initial condition of the limit equations must be consistent

for the problem to make sense. Fortunately, they will be consistent - so we

will have a proper filter. This problem is considerably more difficult in the

.L

*':

. . * .. . . .
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non-lincar case. Theorem 4.1 is the 'large time' extension of Theorem 3.1. The

question of consistency is either ignored in filtering - or else implicitly

assumed; e.g., one cannot allow both z(O) 1 w.p.l and that z40) has a

normal distribution with a nonzero covariance.

Theorem 4.1. Assume the conditions of Section 2 and (C4.1) -(C4.3). Let q.

be bounded and continuous and let F( -) E Ot, Define yC( 5 ) =0, for s 0

and define yE (-,t, .) to be the 'reversed' function ithz values

(0 T < ~)yE(-,t;T) =y'(t-T). Then, if tIE c as C 0,

(4.1) {zEE +.,Z~t + ,W15(t~ + * W6(tE)

satisfying (2.3), (2.5), and z( ),z( .)are stationary. Also (3.1) holds in the

form

(4.2) lim E lq(z'(t)) -F(y(,t; .))]2
E jt

Slim E[q(zE))-(,)J

The limit of (p~ E,c) iS the eXp~CtCatiO/l iith respect to the stationarv z ,~

sYstem.

Proof. Suppose that {zE(t), E > 0, t < is tight jiC.,

N
spP zEt, I N)- 01. Then, by the hypothesis, (zE(t), zE(t), E > 0, t <

is tight and each subsequence of



(z E(tE + t zEt+ ) (t E+ .- (tE) t E<~ > 0) has a weakly

convergcnt subsequence with limit satisfying (2.2), (2.5). Choose a weakly

convergent subsequencc (with tE - )also indexed by E and with limit

denoted by z( .) ( ) W~() Suppose, for the moment, that z( .), z() isIY
stationary. (Clearly, E(t) E as t .)If all limits are stationary, then the

subsequence is irrelevant since the stationary solution is unique. Also, since

the initial conditions of z( .)and z( .)are consistent under stationarity,j

(z( - ), E) is the optimal filter for y( .), z( .). Inequality (4.2) is a consequence

of this and the wecak convergence (by the argument used in Theorem 3.1.).

We next prove tightness of {z6 (t), e > 0, t < ),and then the

stationarity will be proved. We have

I(4.3) E-[A - Q(t)HAIz + Q(t) t.(t,/E 2 ).'E + Q(t)H, zE(t)

Let ( (tjr) denote the fundamental matrix for [A,,- Q(t)H,~ . There are

K < , > 0 such that 14(t,T) l K exp - )(t-T). We have

SE (t) = (t,0)ZE(t)+ { 1(t,T) Q(r)tE(T/E2)dT/'E

+ ft 1>(t,T)Q(T)HZE(T)dT

0

A straightforward calculation using (C4.2 -C4.3) and the change of variable

T/ E T in the first integral yids



E II( t) 1
2  constant (1+ E z E(0) 2 )

giving thc desired tightncss.

To prove the stationarity of thc limit of a ny wea kl1 convcrgent

subsequence, we need only show stationarity of the limit values (z(O), Z(O)) of

the initial conditions (z E (tE). zE(tE)) For this, we use a 'shifting' argument.

Fix T > 0 and take a weakly convergent subsequence of (indexed also by C,

and with tE

(E~t+) Et+) WIE(t 1 - W~ Et -T+ *), zEt -T+)

W£'(t£ -T+-) -XE( tc-T))

with limit (z( )z(.), NV(.) zT() ^T('), WY. T('.)). lary ZT()=

and z T(T) =z(0). We do not know what z T(O) or ZT(O) are but,

uniform/iy in T, they belong to a tight set (bounded in probability): L~e., owing

to the tightness of (z£(t), Z(t), E > 0, t < ),for each p > 0, there is an

N p< such that P( Z(0T(Z) I + IzT(O) j NP) < p for all T and limits of

convergent subsequences. Write (where WT( ')drives' the equation for dz)

T
Z(0) =T z(T) =(exp Aj )ZT(0) + e xp A,.(T-T) Bd\\z,(T)

0

z()=z(T) (ex p [A, - ()H,,i)T~

T

+ 5 exp [A,,- Q(-iH,]'TT).(d\\' (T) + HjzT (T)d-r)
0
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Since T is arbitrary and the set of all possiblc (zT(O)) is tight, the

stability of A.and (A, - Q(-)H) implies that z(O) is thc stationary

random variable, hcnce z(-) is stationary. Similarly, the pair (z(-), z(,)) is

station a ry.

Q. E.D.

Remark. There is no analog of Theorem 4.1 if A, is unstable (if t C

as E - 0), since the limit of z (t 6) then makcs no sense. If zE( .)

satisfied iE =Ajze + Bte( .) for appropriate B and ke( .)(such that the

limit of z (tE+.) is z( .),then we can show that

Ei Ez(t) - E(t)] [Ze(t) ^62(t)]=

E ,t

.............................................................,'A
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5. The Conditional Gaussian Problem.

We now consider the 'wide bandwidth' observation noise analog of the

conditional Gaussian problem [12]. Let qi(-), i=1,2, be bounded and

continuously diffcrentiable matrix valued functions with q2 (x)q 2(x) a I for

some a > 0. Thc signal z6(.) and noise k(-) satisfy the conditions of

Section 2, but the observation is of the 'wide bandwidth and conditional

Gaussian type', where the coefficients are data dependent:

(5.1) y = l1(z +)z' + C1( E) (t) ,

where tE(t) - (t/E)/E also satisfies (C4.2) and (the rather unrestrictive)

(C5.1) below.

t -

C5.1 El du[Etyu) ty(s) yv), v , 0) R(u-s)]-
S

as s,t,-

Define R0 = f.= R(u)du. Formerly we used R0 = I.

In (5.1), the qi() can depend on the covariance Ec(-) given by (5.4)

with no change in the results. The qi(-) can also be more general functions

of yE(-) - as will be clear from the development. For simplicity, we use

(5.1). (The 'correction terms' are more complicated in the general case. See

remarks below.) Such conditional Guassian systems arise, for example, when

one uses the observed data to orient or focus the observing mechanism, and

7 .,*-*. . .
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the signal and noise strength depend on the orientation. The results of the

previous sections are no longer directly applicable, since there is a 'correction

term' due to the 'non-independence' of tE(t) and its coefficent q 2( 2 6(t)) in
Y 0'

(5.1) - and similarly for related terms in the filter(5.3).

To prepare ourselves for setting up the correct filter equations, it is

useful to anticipate the 'correction terms' and center the c-filter appropriately

so that the limit equations are the desired ones. Define the vector

,, 12 ( z )
F(z, E, 0 = '' an cee th t

S[ l ( z )[q2 (z)R 0 q 2 (z)]-I q2 (z)

and G = (Gl.....Gk+m) by (recall that y(t) E Rk and z(t) E Rm  and let

Fi z denote the derivative of F i with respect to z.)

A A

Gi(z, ) =J E Y F; (z, E, (t))F.(z, E, (0))dt

Let GY(z,t) (resp., Gz(z,t)) denote the first k, (resp., the last m) components

of G(z,k). By Appendix 3, G(.) is the proper correction term for the (y ,Z)

system, if ZE were defined by the appropriate 'conditional Gaussian' form of

(2.5wB).

Define the centered observation and filter

(5.2) = - GY(z XE

...................... . . . . . . . . . . . . . .
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(5.3) z= A z - Gz(zE)

+ E q'(z ) [q,(z)Roq 2'(z)] [ - ql(z)z-

(5.4) -= A + TEA' + BB.
z z

SE q1 (zE) 1q2 (zE)Roq6(zE)1-' ql(ZE) E6

(5.3) and (5.4) will bc the proper filter for zE(.), YE(.), in the sense that the -- 2

limit is the usual 'conditional Gaussian' filter and an analog of Theorem 3.1

or 4.1 can be proved. Define the system

(5.5) d7 = Ajz dt + BzdW

(5.6) dy q(z)z dt + q2 (z)dWy.

AA

(5.7) dz = A z dt +

Z q 1 (z)Ro fq 2(z)Roq (z) (dy - q,(z)z dt)

(5.8) = ATE + EA, + B, B, E q(z) [q2(z)Roq2(z)-ql(z).

Note that (5.7, 5.8) is the optimal filter for (5.5, 5.6), where covW y(t) = tR o , ,'

and W,(.) and Wy(-) are independent and covW,(t) = ti.

Theorem 5.1 is the appropriate analog of Theorem 3.1.

Theorem 5.1. Assume the conditions of Section 2, (C4.2) and (C5.1). Let the

system (5.5) (5.8) have a unique solution (in the sense of distributions) for each

initial condition. Then 'N

W2,.
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z (.), zC(.), w (.), S7 E(.), (.)l *

(5.9) .

where z() and Wy() are mutually independent and co, Wy(t) = tR0. Also -

(3.1) holds.

Proof. (3.1) is a consequence of the weak convergence, and the weak

convergence is a consequence of the results in Appendix 3.

Remark. The processes in (5.2) and (5.3) were centered so that the weak

limits (5.7), (5.8) would be the correct filter for the limit system (5.5), (5.6). If

we had not centered, then the limit of (the uncentered) yE(.) equation would

contain an additional drift term which would not be compensated for by the

correction term in the limit of the uncentered z(.) sequence; thus, the limit

process (z(-), E(.)) would not necessarily be a filter for the (z(.), y('))

process.

Note that the correction (centering) terms involve first derivatives of

q(') and q2(.), (although, via the centering, the limit does not involve the

derivatives). This can lead to some unfortunate and generally ignored

difficulties. Suppose that we can choose the qi(•) and that we choose them

to optimize some cost criterion. We can't do the optimization with the

(y6,z1 ,E) system because that would be computationally impossible - but we .

can (in principle) with the limit system. But, unless the resulting 'control'

(qi(-), i=1,2) is continuously differentiable, it cannot be used, since the

correction terms involve derivatives. In fact, it is not clear whethcr or not

. .- •. .-..
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there is a weak convergence result for non-differentiable qi(.). Similar

problems arise wherever the coefficient of a 'wide bandwidth' noise process

depends on a 'control'. If the qi(-) depended on the yE(.) or ye(-) in a

different (but 'smooth') way - other than via (zE,ZE), there will usually be a

(even more complicated) correction term. But its form can be worked out by

the methods of weak convergence theory.

!. .2.a

a%
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6. Nonlinear Observations

The ideas of the previous sections (and Section 8) are useful for

problems which have a partly non-linear structure, but where the 'limit' system

is linear. We now develop this for one special but important case. Many

filtering or communcation systems use limiters on the input for purposes of

increasing robustness or for 'linear dynamic range' reasons, when the power of

the input can vary over a large range. The input is put through a 'hard'

limiter - then followed by a linear filter, whose purpose is to reconstruct the

input. Such systems have been of great interest in communication theory. See

[13], one of the first attempts to systematically analyze such a system.We treat

one case - where the observation is scalar valued and is

2t

(6.1) 6 = k(H, z' + k'(t))/E, k(x) = sign(x), y'(0) 0.

The 1/E is a normalizing term and can be put anywhere in the filter system

- as long as the system is linear. The normalization might or might not be

used in practice. The qualitative results will remain the same - but the

average power in the unnornialized observation goes to zero as the bandwidth

of ky(.) goes to . A similar development (with the same results) can be

carried out with the use of a 'soft' limiter; i.e., k(x) = sign(x) for

lxi > c > 0, k(x) = x/c for lxi < c, and also if k(.) is vector valued.

We use

.. ...----- .. . -.... ."..-...-.-...-........... . . '
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C6.1. (t) = t,(t/E2 )/E, where Y(.) is a component of a stationary"

Gauss-Markov process whose correlation function goes to zero as t (hence

0 exponentially).

Write E(k (t)2 = o2 . Then the average of 6.1) over the noise tE is

y 0 Y

(6.2) H 1 z(t) + 6

1-7 -.'02

where 5e - 0 as E - 0, uniformly for zE(t) in any bounded set. In

preparation for the approximation result, define the systems

(6.3) dz = Az dt + B3d"

(6.4) dv - H z dt + 2"- dW
= kn7a 2)j z 20o d

0-°y

A

(6.5) dz = A z dt + Q(t)[dy - no H2z dtl

+ BEH , E -(6.6) E = A , E + EA + B -EH "

(6.7) Q(t) = E(t) H 2 rno 4 ,.,:.

(6.8) Jo = J sin-1 p(t) dt
0 n0

where p() is the correlation function of { (.). Define zE(.) by
y

(6.9) zE =A 1 z + Q(t)[W ° H'zE'

- -. *--.,.-,-,...°

Ats aW -~~~~~~~~ . "., .~ *~ .~ . a -- .
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Equations (6.5) to (6.8) represent the Kalman-Bucy filter for the system

(6.3), (6.4). Equations (6.6), (6.9) represent the filter which one would normally

use for the system (zE(-), y6 (.)), and whose use we must justify. The

justification is by Theorem 6.1.

Theorem 6.1. A.s.sunze the conditions of Section 2 and (C6.1). Then

(6.10) {zE(.) zE(.) yE()) , (z(.), z() y(-))

and Wy(.) is independent of z(.). Also, (3.1) holds.

Remark. The power of the weak convergence methods is well illustrated by

the relative ease of getting this result. The problem is very hard - due to the

nautre of the nonlinearity, and alternative approaches to even a small part of

the analysis (e.g., as in the classical work [13]) are very involved.

Proof. The proof of the weak convergence follows from that in [14], or [1],

Chapter 9.3], and (3.1) follows from the weak convergence, exactly as in the

proof of Theorem 3.1. Actually, the proofs in [14], [1] use a signal s(.)

which does not depend on c, but the proofs would be essentially unchanged

if the actual E-dependent signal zE(.) were used instead.

•.,1

. . . .
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7. The Large Time Problem: Nonlinear Observations

!..J

We now do the analog of the 'ergodic' case of Theorem 4.1 for the

nonlinear observation problem of Section 6 for the case where the system of

Section 6 is in operation for a long time.

Theorem 7.1. Assume the conditions of Theorem (6.1) and (C4.1) to (C4.3). Then

the conclusions of Theorem 4.1 hold, where z(-), z(-) and E(.) are the

stationary systems for (6.3) to (6.7).

Remark on the proof. By the method of proof of Theorem 4.1, and the

result of Theorem 6.1, in order to carry the proof of Theorem 4.1 to the

present case, we need only show tightness of ({ (t), e > 0, t < *). Due to

the non-linearity of the observation, it is no longer possible to do it directly,

as in Theorem 4.1, and a 'perturbed Liapunov function' method will be

employed [1, Chapter 6]. Those methods are useful for getting stability-type

results for 'wideband noise' driven or 'near' Markov processes, results that are

generally hard to get. Such results are essential for the asymptotic (large t)

analysis. The development will be essentially self contained, but the interested

reader will find a fuller discussion and other applications in [1]. Related

perturbed Liapunov function methods are used in [15].

Proof Part 1. We show only the above mentioned tightness. For use below,

we first evaluate the expression

-.- -._,-.- '_. . ".,'' .-"- . . . " -" " "" " ". ..". . . I
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(7.J KEt) f E~k(H~z6(s) + E(S)) -E~ k(11,7 6 (S) + O (s))]ds,

wherc E6  denote the expectation conditioned on (kE(U), Ze(u), U t), andt y

EE denotes the expectation conditioned on (zE(u), u t)0 and under thc
t

assumption that tE(s) is the stationarv random variable. Let (t

H0 ky (t) for some matrix HO, where Y ,. is the Gauss-Nlarkov process cited

in (C6.lI). Note that there are X. > 0 and co < such that

(7.2) Ivariance [stationary k (t)] -variance [k(t) Iy ( 0 ) 01~ coexp - t

IE[ky(t) I k(0)]1j (coexp - t) I k(O)I

Changing scale s/E 2 
-. s in (7.1) and multiplying the arguments of k( .)

by E yields

(.) KE(t) =e f~ E k(EH~Z(E) +Y(s)) - ~kE~EeS) + Y~(s))]ds
2 t

For large initial conditions (at time t/E 2 ) Y (t/E 2 ), (7.1) might be large. For

I ~ I and) s- t/E 2 an 0(log Ijyt/E 2 )j ' the conditional mean of

~(s) (given (t/E 2 )) will be 0(1). Thus, we can write

1(EE y(t/E2)1 + 1] +IK (t) I = () kK ()I tI- tE)
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We now deal with initial values Y (t/E2 ) 0(1). Let N(a,b) denote a

normally distributed randomz variable with mean a and variance b. In

evaluating the expression

E k(EHZ( S EH ZC(E 2S) + s),E 25

we can replace tlhc cnitionll exp)etin by expectations over ~ (s) only,

where the first (s) can be taken to be N(6 1, o0 (12 ) and the second

can be taken to be N(O,o 2), where 6i - 0 exponentially as (s -t/E 
2 ) -

For notational simplicity, set c2 .-

For small Bi > 0 and z > 0 (with a similar development for z < 0),

P( JN(5 1 , 1-52)1 Ez) -P(jN(0,l) 1 4 Ezfl

4 1IP( IN(O 1-5 2)I 1 Ez) - P(IN(0,l) 1  EZ~f + 0(61) -

<, IP(jN(O,l)1 <, EZ(l+25>2)) -P(jN(0,1)1 <, Ez)j + 0(51)

S2P(Ez N(0,l) <, Ez(]+'252 )) + 0(5k) = (EZ6 2) + 0(61)

*Putting these estimates into (7.3) and using the cited fact that S. 0

exponentially, for some X > 0 we have

I.(7.4) 1K6 (t)1 I O(E)[I (t/E 2) + I

+ 0(E2 ) EE E~z (E2S)1 exp -)(S-t/ E2 ) ds
t

/E2

-KE(t)
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(7.5) 
2 0(C2 )

Part 2. Write (6.9) as

(7.6) z'= [AE- Q(t)H, ]zE + Q(t) kE(t)/E,

where we use

k(t) k(HzE(t) + (t)).
Iy

For our stability argument, Q(-) can be used in lieu of Q(t) in (7.6)

(justified by a 'perturbation argument, which we omit). Define

A1 = [A.- Q(o)Hl,

and let P > 0 be such that A1 P + PA 1 = -C < 0. We start with the

Liapunov function z Pz = V(z), and then 'perturb' it. See Appendix 4 for

the definition of the operator AE below. (It is essentially a 'differentiation'

operator.) By Appendix 4, we have

(7.7) A6 V(zE(t)) = V(zo(t))

-zE (t) C 26(t) + 2z(t)'PQ(-)kE(t)/E.

The second term on the right of (7.7) is not dominated by the first, and

we 'perturb' the Liapunov function in order to 'control' the bad term. Define

the perturbation

,..... :. .-.. --.. . _ ,., -_- ... . ;: ;:;- .;-. - . ,.:i-;.. -. :- i:;i;:;:.:-i : .;? :;. .- .. ,.-)_),..:.,:_;=? L ~i,. , .;,_,5 : ,-
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NTE (t) 2^ 2El (tP Q(-') [E' OE(s) E' O(s)] ds

E E

By Part 1, 1 VJ(t) I 0(1lzE(t)jK,(t) and by Sch\warz's inequality and (7.4),

(7.8) E VI'(t)j I 0(E) E jzEtj

= (E) [I + E zE~)2

Also, we can readily show that

(7.9) k V (t) =-221(t) PQ() Et) -E~k~

+ 2z '(tP JQ(c)[Eckc(s) -t Ek (s)jd

Recall that the E E WE(s) is the expectation over the stationary ~ (s) only:

i.e., the conditioning data is just zE( -1 It can be shown that

By substituting (6.9) for z and using our bound on the integral, the last

term on the right of (7.9) is bounded by

0(l 1~ 6() + I Kf (t) + 0(1) Kf (t)/6E

Define the perturbed Liapunov function VE(t) -V(2E(t)) + VE(t).

Putting the estimates together, evaluating A6 VE(t) via (7.7) and (7.9) and
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cancling the common l/E terms (with opposite signs) in (7.7) and (7.9) and

using (See (A4.1) in Appendix 4)

EVE (t) EV'(0) + fA EE6sd

and the bound on E V'6(t) fyields

EV(zE(t)) constant + O(E) [I + E 2Et 111

(7.10) +f(constant) ds -f tEz~ (s)CzE(s)ds
+ f 100

+ (constant) fE( zE(S) + 1)K E (s)/E ds

+- (constant) tEY2 ZE (S 2EY2 z ~)12d10 ~) z~sId

Using the inequality lab a 2 /C + cb 2  for any c > 0 and (7.5) in the

last two integrals of (7.10) yields, for some constants ei > 0 and c > 0,

(7.11) EzEt 1  c(l)-C 0 J E zE )Ids

f" 0 EJZ sds + c c, t

By letting c2 / < co, (7.11) implies that

(7.12) sup E jZE(t)o

Finally, (7.12) is equivalent to the required tightness of (zE(t), E > 0, t <

SQ. E. D.
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8. The Filtering and Control Problem: Finite Time Case.

The ideas and results of the foregoing sections can bc extended to the

combined filtering and control problem. The issues remain essentially the

same. As seen in the previous sections, the use of the (suitably adjusted

when necessary) Kalman-Bucy filter for the wide bandwidth observation noise

and 'near Gauss-Markov' signal might be very far from optimal, but it is

'nearly optimal' with respect to a large and reasonable class of alternative data

processors. For the combined filtering and control case, the issue is more

complicated. The control system will be driven by wide bandwidth noise as

well, and neither the system nor the reference signals would be Markov.

Suppose that (as is usually the case) one obtains a control (optimal or not)

based on the usual ideal white noise driven limit model. This control will be

a function of the outputs of the filters, and one must question the value of

applying this to the actual wide bandwidth noise system.

Consider the following linear control and filtering problem: Let z6(-)

denote the physical reference signal and let zc(.) * z(-) as E - 0 where,

as in the previous sections, z(.) satisfies

(8.1) dz= Az dt + BdW.

Let the control system be (for constant matrices A. , D,, B,, Hx ) defined by

(8.2) E = Ax x  + D u + Bx , .

with observations , (.), where

-.,. "...............
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(8.3) [3 yE = LR9 J+ , y E Rg, y(O) - . j
where the three processes f- (s)ds W E (t), f' kx(s)d s = WE (t) and z6(

are mutually independent, and WE(-) 4> W(.), WE(.) => Wx(.), standard Wiener .4

processes. Thus 6(-) and 4(-) are wide bandwidth noise processes.

Correlations among these processes can also be handled, at the expense of a

more complex notation.

Define the filters and limit system:

(8.4) l A. + D +

(8.5) dy -- H=xzz dt + dW ; H + dw

(8.6) d = dt + [)dy -U]dt[ ,z A Zz 0 lH Zz"-"_

(8.7) dx = AxXdt + Dxudt + BxdWx " "

with the obvious associated Ricatti equation for the conditional covariance

( .) of (x( .). z( .)). Here Q(t) = 1'(t)H'[cov W(l)]-'. Equation (8.4) will be

the filter for (xE(-), z (.)) with data yE(.), and (8.6) is the filter for (8.5),

(8.7). The cost functions for the control problem are

__
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T
(8.8) RE(u) = JE r(x6(t), z6(t), u(t))dt,

T
(8.9) R(u) = E r(x(t), z(t), u(t))dt,

for bounded and continuous r(.,.,.), and some T < .

The controls take values in a compact set U, and we let (see related

definition of D and Bt in Section 3) Xf denote the set of U-valued

measurable (w,t) functions on Cg[O,-) x [0,-) which are continuous w.p.l.

relative to Wiener measure. Let Ift  denote the subclass which depends only

on the function values up to time t. We view functions in X as the data

dependent controls with value u(y(.),t) at time t and data y(-). Let I

denote the subclass of functions u(.,.) G X such that u(.,t) E Ift for all t

and with the use of control u(yE(-), . ) (resp., u(y(.),,)), (8.2) and (8.4) (resp.,

(8.6), (8.7)) has a unique solution in the sense of distibutions. These

u(yE(.),.) and u(y(.),.) are the admissible controls.

Commonly, one tries to use the model (8.5), to (8.7) to get a (nearly)

optimal control for cost (8.9). This control would, in practice, actually be - '

applied to the 'physical' system (8.2), (8.4), with actual cost function (8.9). Such

controls would normally not be 'nearly' optimal in any strict sense for the

physical systems and questions arise which are similar to those posed for the

pure filtering problem: in particular, with respect to what class of comparison

controls is such a control 'nearly optimal'. Again, weak convergence theory can

provide some answers, although the problem is considerably more difficult, and

the results less satisfactory.

-
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Straightforward weak convergence arguments (using only the assumed

weak convergence of the 'driving WC(.), W6(.) processes', and the uniqueness

of the limit can be used to prove Theorem 8.1. Let 4 denote the class of

U-valued continuous functions u(-,-,.) such that with use of control with

value u(x(t), z(t),t) at time t, (8.6), (8.7), has a unique (weak sense) solution.

Let M% denote the subclass of controls (stationary controls) which do not

depend on t (for use in the next section). Let u(y,-), u6(xc,zt,.) and

u 6 (x,z,-) denote the controls with values u(yE(.),t) u6(x(t),z (t),t) and

us(x(t),z(t),t) at time t.

Theorem 8.1. Assume the conditions above in this section. For 6 > 0, let there

exist a control us(.) in 1 which is 6-optimal for (8.6), (8.7), (8.9), with

respect to controls in I. Then, for any u(.,.) E 3?

(8.1 lim RE(u(yv ,)) > lim RE(us(x^ E, ^ .)) -6
E

R R (X, z, .)) - S

Remark. It would be preferable if we could allow the comparison control

u(yE(.), -) to depend on E other than only via the values of \E(_); i.e., for

it to be a (say) 6-optimal admissible control for the 'physical' E-system. This is

- possible, if we can a-priori guarantee some smoothness (uniformly in c) of the

obtained controls - so that a weak convergence argument can be carried out

* yielding an admissible limit control for the filtering/control problem. But, in

iK
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general, the limit of (uE(y(),.)) would not necessarily bc dependent only on 1:2. -

the limit data v - even if y6(.) > y(.). This is clear from the examples in

Section 2. Similar difficulties occur in all work concerning the existence of

optimal controls under 'partial information'.

Extensions. The theorem can be carried over to the case where the

observations (of both xE and z6) are of the non-linear form (6.1), and to

the conditional Gaussian case.

Theorem 8.1 can be readily extended to the non-linear case where

xc = b(xE,u) + o(x, x) and (xE(-) converges weakly to an appropriate -"-

diffusion for 'nice' controls, and where xt(t) can be observed without

additive noise. If the noise term o(x, ) were of the control dependent form

cr(x,u,t ), then there might not be a weak convergence result - unless u(.)

were 'smooth'. In the 'smooth' case, there might be a correction term which

depended on certain derivatives of the control! See Section 5 for additional

comment on this point.

... -- .. °1
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II
9. Filtering and Control: The Large Time Case.

We now treat the filtering and control analog of the large time and

bandwidth problem of Section 4, and will use the assumptions

C9I0 fA . A1-A i A H is obseble ad fA, B:1z

controllable.

C9.2. c(-) satisfies (C4.2).

The cost functions are -

(9.1) )fe(u) = rnm E r(zE(t),xE(t),u(t))dt

(9.2) 'Y(u) =i Tr E r(z(t),x6(t),u(t))dt

We adapt the point of view of [18, Section 6] and assume that the

system can be Markovianized. This is incorporated in the following

assumption.

C9.3. For each E > 0, there is a random? process 06A(.) such that

COctt< )is tight and for each u(-) E MO, (MO defined above Theorem 8.1)

X6(.),(()x () ( 1.) ~(. ,() is a right continuous
xa

homnogeneous Afarkov-Feller process (with left hand limits).
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Remark. if z6() satisfies i6 = AJ + then the assumption (C9.3)

holds if the driving noises satsf (C.3 anC.),(92
.)(. Y saifzC.)ad(9l,(92

hold; i.e., if the noises t6(-) and t6(.-) can be written as functions of a

suitable Markov process. Let U( xEz ) and U( x ,z) (and similarly for u6)

denote controls with values U( x (t), z (t)) and u(x(t),z(t)) at time t.

Theorem 9.1. Assume the conditions of Theorem 8.1 and (C9.1) -(C9.3). Let

kC() and t6(-) satisfy (C4.2) and let z6() satisfy (C4.3). For 5 > 0,

let there be a 5-optinzal* control -U6(.,-) CE Mo for the system (8.1), (8.6), (8.7),

and cost (9.2), and for wvhich (8.1), (8.6), (8.7) has a uniquie invariant measure.

Then, for u(,) E-

(9.3) lim 6((CA) >Il~ (j(E2)

- )((X,Z)) -

Proof. Fix u(,) E Mo. Define the 'averaged transition measure'

PC.)-£E P{X6(t) E X'(0))dt,

where the expectation E is over the possibly random initial conditions, and

* X6() is the process corresponding to the use of uxE() ZC(.) By the

*By B-optimal, one means that it is S-optimal with respect to all
non-anticipative (with respect to the observed data) measurable u-v.alued
controls, for each initial condition.

.21 I2
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hypothesis, {P .( -), ? 0) is tight. Also (writing X =(x,z,X,z))

(9.4) Ex z I)) = fr(x~(XZ)) PE(dX).

"F..

Let rE "  be a sequence such that it attains the limit lim, and for which
n T

P .E(- converges weakly to a measure, which we denote by P'(.). Using
n

the 'Feller' property and the right continuity, it is not hard to show that

PE(.) is an invariant measure for Xe(.). Also, by construction of P6(.),

76I(u~x6,zE)) =fy( x,z,u(X^,Z))P'(dX)

Let (xo 0 ),z (.),x0(-),z(.)) denote the first four components of the

stationary Alarkov-Feller Xe(.)-process associated with the invariant measure

PE(.). By our hypotheses (see the argument in Section 4) (x6(-),z'(.),X6(.),

z'() converges weakly to a limit (x( . ),Z(.),Xo(.),Zo(.)) satisfying (8.7),

(8.1), (8.6). Also, the limit must be stationary, since the (x( .),...,z .)) is for

each E. Let 1 u(.) denote the invariant measure associated with this stationary

limit. Then

E Ac AE _YUA A) (XUA A) A A

7(u(x,z)) 7(u(x,z)) = xz (dxdzdxdz)

By a similar argument, it can be shown that

6A A -6
/(u (x,z)) =fr(x,z,u(x,z)) i' (dxdzdxdz)

- lim "y (u(x ,z )) ."

.... .... .... .... .... .... ....

-. . . .... . . . . . . . . ~ ...-.- '.'4. .. ' ':- - '.'-'-'o



*~~V 11- N7 IL IL lk. AF -LI - I. -

-43-

(The uniqueness of the invariant measure uY(.) is used here). Inequality

(9.3) now follows from the 5-optimality of ji(.). Q.E.D.

Extensions. As for the case of Theorem 8.1, we do not know how to work

with arbitrary admissible u(-) as comparison controls. But Theorem 9.1 can

be extended in many ways. Perhaps the simplest is the following. For

arbitrary q and ti )t 0, let u(t) depend on (y(t-ti) - y(t), i , q) or (for

the c-system) on (y (t-t i) - y6 (t), i q) as appropriate, as well as on

x(t),z(t), or on x (t),z 6 (t), and enlarge the class 40  to include such

dependencies. Then the theorem remains true. More generally, we can allow

u(-) to depend on other functionals of the data, provided that those

functionals, together with XE(.) can be 'appropriately Markovianized' - so

that the scheme of the proof can be used, and the uniqueness and

non-anticipitative properties continue to hold.

Ij-

%* ." •t

-'-I

. ...
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Appendix 1, Weak Convergence Definitions. I-

Let P(.) be the measure associated with X, a Euclidean r-space (R)

valued random variable. We say that {X) or {Pn) is tight (equivalently,

{Xn} is bounded in probability) if sup P (I(XnI ? N) -0 as N . If
n

(Xn} is tight, then by the Helley-Bray Theorem, there is a subsequence {ni}

and a measure P() and associated random variable X such that Xn. X

in distribution. Equivalently, Ef(Xn-) - Ef(X) for each bounded and

continuous function. In fact, f(.) can be any bounded measurable function

for which P(x: f(.) discontinuous at x) = 0 ([31, Theorem 5.1). As seen in

the text, this is a useful generalization.

Let C[0,) denote the space of continuous functions on [0,-) with

values in Er (we always omit the r-dependence in the notation), with the

topology of uniform convergence on each bounded interval. The metric on

C[O,) can be taken to be

d(x(.),y(.)) = oe - max [1, sup Ix(s) - y(s)l]dt

-- .:,. '

Let D[O,) denote the space of (Rr-valued) functions on [0,) which

are right continuous and have left hand limits, and with the Skorohod

topology. See [3], [4] for a discussion of this topology. The topology can be

metrized so that the spce is complete and separable. If x(-) is continuous, ""

then x( x() in this topology if and only if the convergence is uniform on

each bounded interval. This is all that we need to know here. If dT(.,.) is

the metric on D[O,T], then (as above), the metric on D[0,) can be taken to

-- ---. . . . . . . . . . ......-. - - . . . : . - .- - -. . . -. .---.--. -. .- - " -.- - -"::
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be fo e'tdt(x(.),y( ' ))dt. The spaces C[O,-) and D[O,*) are the two most

useful (currently) spaces for the study of the convergence of a sequence of

random processer. Even if the paths are continuous, it is often more

convenient to work with D[O,*).

Let Pn( -) be a measure on D[O,*) associated with a random process

Xn(-) (which we call X n) whose paths are in D[O,0) w.p.1. We say that

Pn() converges weakly (written >) to a measure P(.) associated with a

process X = x(-) with paths in DJO,*) if Ef(Xn) -. Ef(X) for each

bounded continuous function f(.) on D[O,*). We might also write X n 4 X.

If there is weak convergence, then f(-) can be any measurable function

which is continuous only almost everywhere with respect to the limit measure

P(-) [3, Theorem 5.1]. The sequence (Xn) or (Pn) is said to be tight if

for each 6 > 0, there is a compact set K6 c- D[0,*) such that

P.(x C- K6 ) 1-5 for all n. If (Xn) is tight, then there is a subsequence

n, and a P(-) on D[O,-) (with associated process X = x(.)) such that

Xn.4 X. Analogous definitions and facts hold for processes with paths in

There are many useful criteria for tightness and for identifying the

limits. For purposes of analysis, it is often useful to alter the probability

space so that there is a stronger type of convergence. The choice of the

probability space does not affect the weak convergence result - since the

disributions of the X n  never changes.

Skorohod imbcdding (sometimes called Skorohod representation) [1], 119].

Let Pn 4 P on D[O,-) (or on C[O,*)). There is a probability, space (fl,B,P)

with processes Xn, X defined on it so that P{X n E A) = P(Xn E A),

._,'2,d_' -,5_,'_Z,"-.5_-,5_', .'_ ,'_-,'-;_- " . . . ..-.......... .. .. •.........-............-... ...... .... .....
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P(X E A) =P(X E A) for an), Borel set A E D[O,-) (or in C[O,-), if wve are

working in this space) and d(X.,X) 0 w.p. 1. Thus, if wec wish, we can

alter the probability space so that we get w.p.l. convergence in the metric of
Ir

D[O,w) (or C[O,-)), without altering the distributions of each process Xn or

X. This device often facilitates the analysis.

IF
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Appendix 2. Proof of Lemma 2.1.

Proof. Choose a finite partition G =(G 0 ',,...) of Rg such that

P(Y e GO) 0

(For notational simplicity we omit Go below.) Let T (rcsp. 'F,) denote the

o-algebra on fl induced by (IG(Y, i > 0)). (resp., I 0 (Yn), i > 0)). Given
I I

5 > 0, we can choose the partition such that

(A2.2) E(E(X JY) -E(XJT)1
2  S

By Jensen's inequality,

By (A2.3) and the arbitrariness of 6, to prove the lemma, we need only show

that

lim E[Xn E(Xn Fn)IW
n

=lim [EX' - EE 2(XnjF')
n

SE[X -E(X IF)]' EX' E[E 2(X IF)],

or, equivalently. (since EX 2n X)t~
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(A2.4) -E E2 (X, T ) E E2(X IF) .

(A2.4) follows from Bayes' rule, the weak convergence and Fatous' lemma

since

lim
E E (XI.

E2 X

nn
I P(YQCE.D.

E'Xly(GI
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Appendix 3. A Method for Getting Weak Convergence.

In this section, we outline a method for showing that a sequence of

solutions to a wide bandwidth noise driven ODE converg's weakly to a

diffusion, and identify the diffusion. The method is taken from [1, Chapter

5], and is a slight simplification of the method in [8].

Let x6(-) be defined by

(A3.1) i= K(x6) + Flx )t(t/f2)e,

where (-) is a second order stationary right continuous process with left

hand limits and integrable correlation function R(-), and the functions K(.)

and F(-) are continuous, (A3.1) has a unique solution and F() is

continuously differentiable. Define R o = Ek(u)k (0)du, assume that ,.

(A3.2) Elf du [E(k,(u) (s) k(T),T'r,0) - R(u-s)] 0 -. .
S

as t,s - o.

The condition is not very restrictive. We use it here only because it allows

the use of a convenient reference.

Define the diffusion operator f and function G (G,,...) by

(A3.3) rf(x) = fx(x) K(x) +j E[fx(x)F(x)k(t)] F(x)t(O)dt
0 x

-fx(x) Gi(x) + L trace (fxx(x)} (F(x)RoF (x)),
.i 2

~ ~ j..e-
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where (G, G are the coefficients of the first derivatives (f. .. in I

(A3.3).

The operator f is the differential generator of the lto process

(A 3.4) dx =G (x)dt + F(x)R0  d w,

where w() is a standard Wiener process. Suppose that (A3.5) has a unique .

solution in the sense of distributions. Then, bv [1, Chapter 5.8.41, if

xe(O) 4 x(O), then xc(.) 4 x(.), with initial condition x(O).
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Appendix 4. A Weak Infinitesimal Operator A.

Refer to the notation of Section 6. Let f(.), g(.) be real valued

(progressively) measurable functions of z (.), tE(.) and let EE denote the

expectation conditioned on zE (s),kE(s),s I t. Define the operator AE by:

f(.) E domain of AE and AEf = g if for each T, :

lim su E Et f(t+A) - f(t)

sup Eig(t)j <

Et" f(t+A) - f(t) , eE z g(t) I  0, each I . '-

Then [1], 181, [16], [17], for s > 0, t 0, 'i
- p~t+8

(A4.1) E f(t+s) - f(t) -ft t  f(u)du.

The AE operator plays the role of an infinitesimal operator for non-Markov

processes. The relationship (A4.1) has many applications (see the references) in

weak convergence theory.

.
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